2015年11月30日 星期一
[物理] 平行光進入拋面後, 所有反射光都會通過焦點的數學證明
前設是反射定律。
Consider a general parabola y2=4px.
The focus of the parabola is (p,0).
Let a general horizontal line be y=k, where k is constant.
It cuts the parabola at (k24p,k).
It can be shown that the general normal line at (k24p,k) is:
y=−k2px+k+k38p2
and the reflection of the horizontal line through the normal at (k24p,k) is:
y=−4pk4p2−k2x+k34p2−k2+k, where k≠2p.
Substitute (p,0) into y=−4pk4p2−k2x+k34p2−k2+k,
we have
L.H.S=0
R.H.S =−4pk4p2−k2p+k34p2−k2+k=−4p2k+k3+4p2k−k34p2−k2=0
L.H.S=R.H.S
for k=2p, the reflection line is a vertical line pass through (p,k) and (p,0).
Thus, the reflection line passes the focus.
筆者利用Geogebra將反射的情況畫出來了, 可參考
http://tube.geogebra.org/m/2188507
訂閱:
張貼留言
(
Atom
)
沒有留言 :
張貼留言