Loading [MathJax]/jax/output/HTML-CSS/jax.js

2015年11月30日 星期一

[物理] 平行光進入拋面後, 所有反射光都會通過焦點的數學證明


前設是反射定律。
Consider a general parabola y2=4px.
The focus of the parabola is (p,0).

Let a general horizontal line be y=k, where k is constant.
It cuts the parabola at (k24p,k).

It can be shown that the general normal line at (k24p,k) is:
y=k2px+k+k38p2

and the reflection of the horizontal line through the normal at (k24p,k) is:
y=4pk4p2k2x+k34p2k2+k, where k2p.

Substitute (p,0) into y=4pk4p2k2x+k34p2k2+k,

we have
L.H.S=0

R.H.S =4pk4p2k2p+k34p2k2+k=4p2k+k3+4p2kk34p2k2=0

L.H.S=R.H.S

for k=2p, the reflection line is a vertical line pass through (p,k) and (p,0).
Thus, the reflection line passes the focus.

筆者利用Geogebra將反射的情況畫出來了, 可參考
http://tube.geogebra.org/m/2188507

沒有留言 :

張貼留言