Processing math: 100%

2015年12月7日 星期一

[數學] 邊長為a的正方形, 其中三角(逆時針, 從左上開始)至正方形一內點的距離分別為1, 2和3, 求邊長a和對應長度為1和2的線段夾角

問題:







解答:

Let A:(0,0), B:(0,a), C:(a,a), D:(a,0) be the corners of the square.

The equations of the circles centered at A, B and D with radii 2, 1 and 3 respectively are

x2+y2=4 ------- (1)

x2+y22ay+a2=1 ------- (2)

x2+y22ax+a2=9 ------- (3)

The point K:(m,n) in the square satisfies these equations simultaneously, where m>0 and n>0

From (1) and (2), (2) and (3), we have

2an=a2+3>0

2am=a25>0

Sum of their squares is

(2ay)2+(2ax)2=4a2(x2+y2)=16a2

Thus,

(a2+3)2+(a25)2=16a2

a410a2+17=0

Using quadratic equation to solve a2, which is the area of the square.

Area=a2=10±1024(17)2=5±22=5+22

(Since a2>5, reject a2=522)

Therefore a=5+22

Consider ABK, by cosine law, we have

a2=12+222(1)(2)cosθcosθ=12θ=135





P.S. 這個順便測試在Mathb.in寫的東西直接複製過來怎麼,完全沒問題。在Mathb.in編輯簡單多了,寫了的東西可立即顯示,這邊預覽跑半天呢。

沒有留言 :

張貼留言