解答:
Let A:(0,0), B:(0,a), C:(a,a), D:(a,0) be the corners of the square.
The equations of the circles centered at A, B and D with radii 2, 1 and 3 respectively are
x2+y2=4 ------- (1)
x2+y2−2ay+a2=1 ------- (2)
x2+y2−2ax+a2=9 ------- (3)
The point K:(m,n) in the square satisfies these equations simultaneously, where m>0 and n>0
From (1) and (2), (2) and (3), we have
2an=a2+3>0
2am=a2−5>0
Sum of their squares is
(2ay)2+(2ax)2=4a2(x2+y2)=16a2
Thus,
(a2+3)2+(a2−5)2=16a2
a4−10a2+17=0
Using quadratic equation to solve a2, which is the area of the square.
Area=a2=10±√102−4(17)2=5±2√2=5+2√2
(Since a2>5, reject a2=5−2√2)
Therefore a=√5+2√2
Consider △ABK, by cosine law, we have
a2=12+22−2(1)(2)cosθcosθ=−1√2θ=135∘

P.S. 這個順便測試在Mathb.in寫的東西直接複製過來怎麼,完全沒問題。在Mathb.in編輯簡單多了,寫了的東西可立即顯示,這邊預覽跑半天呢。
沒有留言 :
張貼留言